SAN FRANCISCO – Artificial intelligence promises to make spacecraft increasingly resilient and capable of gathering data without waiting for instructions from ground controllers.
“We’ve been limited with the way we’ve done work so far,” Evana Gizzi, AI research lead at NASA’s Goddard Space Flight Center, told SpaceNews. “And there are so many things we want to do.”
Distributed missions, for example, where spacecraft work with landers and rovers to achieve common goals, will require autonomous capabilities. AI also paves the way for extensible mission architectures, which allow new spacecraft and sensors to join on-orbit swarms.
“At NASA and in the aerospace industry in general, mission concepts are becoming more complex, which means more of them can’t be realized without AI,” said Gizzi, who earned a PhD in artificial intelligence from Tufts University.
Measuring Methane
Still, introducing AI to NASA missions is not easy. Space mission planners tend to be risk averse and understandably wary of untested algorithms.
To lower the barrier to introducing AI for spacecraft, the NASA Goddard Space Autonomy and Resilience (SPAR) lab created the Onboard Artificial Intelligence Research platform, called OnAIR. OnAIR, an open-source-software pipeline and cognitive architecture tool, is publicly available on software-developer platform GitHub.
A prototype version of OnAIR was tested on NASA’s NAMASTE mission, which used a fleet of autonomous drones to measure methane distribution at Alaskan permafrost sites. (NAMASTE stands for Network for Assessment of Methane Activity in Space…
Read the full article here